
Python for Physicists

Chapter 8. NumPy Arrays: 2D

1D Array

2 8 18 32 50 72

A[0] A[1] A[2] A[3] A[4] A[5]

A = A[5] = 72

• Array indices start at 0
• Python does not distinguish between vertical (column) arrays

and horizontal (row) arrays

2D Array (matrix)

2 8 18 32

50 72 98 128

162 200 242 288

B[0,3] = 32

B[0,0] = 2

• Indices start at [0,0] in top right corner of array
• First index is row number, second is column number

B[2,3] = 288

2 8 18 32

50 72 98 128

162 200 242 288

B[0,:] = [2, 8, 18, 32]

• B[0,:] = first (top) row

top row

Slicing 2D Arrays

Slicing 2D Arrays

2 8 18 32

50 72 98 128

162 200 242 288

B[0,:] = [2, 8, 18, 32]

• B[0,:] = first (top) row
• B[1,:] = second row

top row

B[1,:] = [50, 72, 98, 128]

second row

Slicing 2D Arrays

2 8 18 32

50 72 98 128

162 200 242 288

B[0,:] = [2, 8, 18, 32]

• B[0,:] = first (top) row
• B[1,:] = second row
• B[:,0] = first column

top row

B[1,:] = [50, 72, 98, 128]

second row

B[:,0] = [2, 50, 162]

first column

Creating 2D Arrays

0 0 0 0

0 0 0 0

0 0 0 0

• We can create 2D arrays filled with 0’s or 1’s using the following commands:
 np.zeros((n,m))

 np.ones((n,m))
• The shape of the array is specified using a (n,m) tuple where
 n = # rows
 m = # columns

A = np.zeros((3,4))
1 1

1 1

1 1

1 1

A = np.ones((4,2))

Creating Random 2D Arrays

6 8 1 0

7 2 2 6

5 3 8 9

• We can create random 2D arrays using the random number generator
discussed in Chapter 7

• We specify the shape of the array using the size=(n,m) option

rng = np.random.default_rng()
A = rng.integers(1, 9, size=(3,4),endpoint=True)

Example: Create a array filled with random integers with 3 × 4 0 ≤ y ≤ 9

Array Attributes

6 8 1 0

7 2 2 6

5 3 8 9

The following three attributes contain basic info about the array:
• array.ndim = number of dimensions (2 for a 2D array)
• array.size = total number of elements (= rows columns for 2D array)
• array.shape = tuple with number of elements in each dimension
 (nrows,ncols)

×

A =

A.ndim # = 2 in this example
A.size # = 12
A.shape # = (3,4)

A.shape[0] # = 3 (number of rows)
A.shape[1] # = 4 (number of columns)

Example: array3 × 4

Reshaping Arrays

6 8 1 0

7 2 2 6

5 3 8 9

Transpose flips the rows and columns of an array:
• Use .T attribute to return the transpose

A =

Example:

6 7 5

8 2 3

1 2 8

0 6 9

A.T =

Reshaping Arrays

6 8 1

7 2 2

Flatten “unwraps” a higher-dimensional array into a 1D array
• To flatten a 2D array, one starts with the top-left element and reads down the first

column, then second column, etc. to produce the flattened array.

A =

Example:

A.flatten() = 6 7 8 2 1 2

6 8 1

7 2 2

Reshaping Arrays
Reshape reorders the elements in a given array to fit a new array.

• The total # of elements of the original and reshaped arrays must be the same
• reshape((n,m)) takes a tuple (n,m) as it’s argument

Examples:

A =
1 2 3 4 5 6

7 8 9 10 11 12

1 2 3 4

5 6 7 8

9 10 11 12

A.reshape((3,4)) =

A.reshape((6,2)) = 1 2

3 4

5 6

7 8

9 10

11 12

.mean() calculates the mean values of array elements in different ways
• A.mean() with no arguments returns the mean of all values in the array
• A.mean(axis=0) returns the mean along the array columns
• A.mean(axis=1) returns the mean along the array rows

Example:

A =
1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5 6 7 8

9 10 11 12

5 6 7 8

A.mean(axis=1)

A.mean(axis=0)

2.5

6.5

10.5

Computing Statistics along Rows or Columns

