Chapter 8. NumPy Arrays: 2D

import numpy as np

me = 9.11le-31 # mass of electron
c = 299792458 # speed of light
u =0.1*c # particle velocity

gamma = 1 / np.sqrt(1-(u/c)**x2) # gamma factor

KE = (gamma-1) * me * Cx*2 # relativistic kinetic energy

Python for Physicists

1D Array

A = 2 8 18 32 50 72 “ A[5] = 72

A[0] A[l] A[2] A[3] A[4] A[S5]

* Array indices start at O
 Python does not distinguish between vertical (column) arrays
and horizontal (row) arrays

2D Array (matrix)

B[0,0] = 2
~
2 8 18 3o 4T BLO,3]
50 72 08 128
162 200 242 288 @-— B[2,3]

* Indices start at [0,0] in top right corner of array
* First index is row number, second is column number

32

= 288

Slicing 2D Arrays

2 8 18 32
50 72 o8 128
162 200 242 288

« B[0,:] = first(top)row

top row
B[0,:] =

[2,

8,

18,

32]

Slicing 2D Arrays

2 8 18 32
50 72 98 128
162 200 242 288

e B[0,:] = first(top)row
* B[1l,:] = secondrow

top row

4 B[0,:] =

[2,

8, 18,

second row

%— B[1,:]

[50,

72,

98,

32]

128]

Slicing 2D Arrays

first column

B[:,0] = [2,

« B[O, :]
e« B[1,:]
* B[:,0]

50,

an

162
] 2 8 18 32
50 72 98 128
162 200 242 288

first (top) row
second row
first column

top row

4 B[0,:] =

[2,

8, 18,

second row

%— B[1,:]

[50,

72,

98,

32]

128]

Creating 2D Arrays

* We can create 2D arrays filled with O’s or T’s using the following commands:
np.zeros((n,m))
np.ones((n,m))

* The shape of the array is specified using a (n,m) tuple where
n = # rows

m = # columns
A = np.ones((4,2))

A = np.zeros((3,4))

1 1

0 0 0 o)
1 1

0 0 0 0

Creating Random 2D Arrays

 We can create random 2D arrays using the random number generator
discussed in Chapter 7
* We specify the shape of the array using the size=(n,m) option

Example: Create a 3 X 4 array filled with random integers with0 <y <9

rng = np.random.default rng()
A = rng.integers(1l, 9, size=(3,4),endpoint=True)

Array Attributes

The following three attributes contain basic info about the array:

e array.ndim = number of dimensions (2 for a 2D array)
e array.size = total number of elements (= rows X columns for 2D array)
e array.shape = tuple with number of elements in each dimension

(nrows,ncols)

Example: 3 X 4 array

A.ndim
68| 1O A.size
A = 7 2) 6 A.shape
5 | 3| 8| 9
A.shape[0]

A.shape[1l]

H W F*

= 2 1in this example

12
(3,4)
= 3 (number of rows)
= 4 (number of columns)

Reshaping Arrays

Transpose flips the rows and columns of an array:
* Use .T attribute to return the transpose

Example:

Reshaping Arrays
Flatten “unwraps” a higher-dimensional array into a 1D array

 To flatten a 2D array, one starts with the top-left element and reads down the first
column, then second column, etc. to produce the flattened array.

Example:

A = A.flatten() = 6 7 8) 1 2

\ﬁ/? ‘/

Reshaping Arrays

Reshape reorders the elements in a given array to fit a new array.
* The total # of elements of the original and reshaped arrays must be the same
« reshape((n,m)) takes a tuple (n,m) as it’s argument

Examples:
A = 1 2 3 4 5 6 A.reshape((6,2)) = | f 2
7 8 9 10 1 12 3 4
5 6
1 2 | 3 | 4 [
A.reshape((3,4)) = 5 6 7 8 9 10
9 | 10| 1 | 12 | 12

Computing Statistics along Rows or Columns

.mean() calculates the mean values of array elements in different ways
* A.mean() with noarguments returns the mean of all values in the array
* A.mean(axis=0) returns the mean along the array columns
« A.mean(axis=1) returnsthe mean along the array rows

Example:
A.mean(axis=1)
1 2 3 4 1 2 3 4 2.5
A = 5 6 7 8 5 6 7 8 6.5
9 10 11 12 9 10 11 12 10.5

A.mean(axis=0) 5 6 7 8

